
Autodesk Research

December 2024

SyDEVS Introduction
Theory – Paradigm – Implementation

SyDEVS is a framework supporting the development and integration of
systems analysis and simulation code.

Decades of theory on the representation of systems forms a basis for
the SyDEVS approach.

A paradigm has been developed that combines discrete event
simulation, dataflow programming, and agent-based modeling, and
allows any simulation to be specified in the form of a node graph.

To implement a simulation using this approach, nodes are defined as
C++ classes which inherit from classes in the SyDEVS open source library.

Theory

19801970 20001990 20202010

Theory

SyDEVS is based on theory that
dates back to the late 1960s.

19801970 20001990 20202010

Theory

Here is a small sample of related
publications from the last 50 years.

A. Wayne Wymore
A Mathematical Theory of Systems Engineering

1967

Theory

General methods to formally
represent systems began with
the work of Wayne Wymore.

https://books.google.ca/books/about/Mathematical_Theory_of_Systems_Engineeri.html?id=hIhzjwEACAAJ

Bernard P. Zeigler
Theory of Modeling and Simulation

1976

Theory

Bernard Zeigler applied similar
ideas to simulation.

https://books.google.ca/books/about/Theory_of_Modeling_and_Simulation.html?id=REzmYOQmHuQC

Theory

He found that essentially all simulations can be represented
in a common form based on the discrete event simulation
paradigm. Zeigler named this common form "DEVS".

Bernard P. Zeigler
Theory of Modeling and Simulation

1976

https://books.google.ca/books/about/Theory_of_Modeling_and_Simulation.html?id=REzmYOQmHuQC

19801970 20001990 20202010

Theory

Hans L. M. Vangheluwe
DEVS as a Common Denominator…

2000

Theory

Over the years, the generality of
DEVS was confirmed. It was found
that for each of the most common
modeling paradigms, any model
expressed in that paradigm could
also be represented using DEVS.

https://ieeexplore.ieee.org/document/900199

19801970 20001990 20202010

Theory

Autodesk Research & Carleton University
Formal Languages for Computer Simulation

2011

Theory

In 2011, researchers at Autodesk
began exploring how to make DEVS
more approachable to scientific
and engineering communities.

https://www.igi-global.com/book/formal-languages-computer-simulation/75484

Autodesk Research
DesignDEVS Help Graphic

2012

Theory

The process involved
several iterations.

Autodesk Research & Simon Fraser University
Designing DEVS Visual Interfaces…

2015

Theory

At one point, a set of visual interfaces
was designed along with a new way of
expressing DEVS.

https://www.research.autodesk.com/publications/designing-devs-visual-interfaces-for-end-user-programmers/

Autodesk Research
A Symmetric Formalism for Discrete Event Simulation…

2018

Theory

Eventually, a new variant of DEVS called
“Symmetric DEVS” was published,
combining discrete event simulation
with dataflow programming and agent-
based modeling.

https://www.research.autodesk.com/publications/a-symmetric-formalism-for-discrete-event-simulation-with-agents/

19801970 20001990 20202010

Theory

Paradigm

Paradigm

SyDEVS is an implementation of Symmetric DEVS, a
paradigm combining discrete event simulation,
dataflow programming, and agent-based modeling.

Dataflow

Paradigm

Dataflow programming is a widely
used paradigm in which the links
between nodes form a directed
acyclic graph.

Dataflow

Paradigm

A node is executed once it receives
data on all of its input ports.

DEVS

Paradigm
To introduce the notion of time into the
paradigm, a column of discrete event
simulation nodes is incorporated into
the graph. Links between these nodes
may form cycles.

Paradigm
The execution of the entire graph is
now partitioned into three phases.

Initialization
(Dataflow)

Paradigm
The first phase is called "Initialization".
A dataflow network collects data and
converts it into a form suitable for
simulation.

Simulation
(DEVS)

Paradigm
The second phase is the "Simulation"
(or "DEVS") phase. Messages are
passed from node to node as time
advances.

Finalization
(Dataflow)

Paradigm
The third phase is called "Finalization".
Another dataflow network is executed
to prepare statistics and metrics using
data from the simulation nodes.

Paradigm

There are four types of nodes.

Function
Node

Atomic
Node

Paradigm

Function nodes are the basic type of dataflow node.

Atomic nodes are the basic type of simulation node.

Composite
Node

Paradigm

Composite nodes contain networks (dataflow + DEVS +
dataflow) of other nodes. The contained nodes can
themselves be composite nodes, forming a hierarchy.

Collection
Node

Paradigm
Collection nodes contain any number of
instances of a single type of node. The
number of instances can change during
a simulation. Collection nodes are useful
for agent-based modeling, where each
instance is an agent.

Nodes

1. Function Node

2. Atomic Node

3. Composite Node

4. Collection Node

Paradigm

Here is a list of the four types of nodes.

Paradigm

Each type of node contains a particular
set of elements.

Atomic
Node

Paradigm

For the purpose of understanding the
paradigm, the elements of the atomic
node are of key importance.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Paradigm

Atomic nodes contain functions for four types of events.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Paradigm

The Initialization Event is invoked once, at the beginning
of the simulation or (if the node is an agent in a
collection node) when the node is created.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Paradigm
An Unplanned Event is invoked every time a message is
received. The node does not know when it will receive a
message; hence these events are "unplanned". The fact
a node must always be ready for an incoming message is
one of the distinguishing characteristics of DEVS.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Paradigm

A Planned Event is essentially scheduled by the node,
and hence "planned". It is only during one of these
events that a message can be sent.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Paradigm

The Finalization Event is invoked once, at the end of the
simulation or (if the node is an agent in a collection
node) when the node is terminated.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Paradigm
The Elapsed Duration is the time elapsed since the
previous event. It is available as a source of information
for Unplanned, Planned, and Finalization events. For
Initialization events, there is no previous event, and
hence no Elapsed Duration.

Elapsed
Duration

Elapsed
Duration

Elapsed
Duration

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Paradigm

Planned
Duration

Planned
Duration

Planned
Duration

The Planned Duration is the time before the next scheduled
Planned Event. It is produced by every Initialization, Unplanned,
and Planned event, overriding any previously scheduled
Planned Event. For Finalization events, there is no next Planned
Event, and hence no need to produce a Planned Duration.

Nodes

1. Function Node

2. Atomic Node

3. Composite Node

4. Collection Node

Events

1. Initialization Event

2. Unplanned Event

3. Planned Event

4. Finalization Event

Paradigm

Here are lists of the four types of nodes
and four main types of events.

Implementation

Implementation

At present, there is no visual
programming interface. Node graphs
similar to the one shown must be
defined in C++ using SyDEVS classes.

Atomic
Node

Implementation

Suppose one wishes to implement
an atomic node.

class queueing_node : public atomic_node
{
public:
 // Constructor/Destructor:
 queueing_node(const std::string& node_name, const node_context& external_context);
 virtual ~queueing_node() = default;

 // Attributes:
 virtual scale time_precision() const { return micro; }

 // Ports:
 port<flow, input, duration> serv_dt_input; // service duration
 port<message, input, int64> job_id_input; // job ID (input)
 port<message, output, int64> job_id_output; // job ID (output)
 port<flow, output, duration> idle_dt_output; // idle duration

protected:
 // State Variables:

duration serv_dt; // service duration (constant)
 std::vector<int64> Q; // queue of IDs of jobs waiting to be processed

duration idle_dt; // idle duration (accumulating)
 duration planned_dt; // planned duration

 // Event Handlers:
 virtual duration initialization_event();
 virtual duration unplanned_event(duration elapsed_dt);
 virtual duration planned_event(duration elapsed_dt);
 virtual void finalization_event(duration elapsed_dt);
};

Implementation
They would then write a C++
class that inherits from the
atomic_node base class
provided by the SyDEVS library.

class queueing_node : public atomic_node
{
public:
 // Constructor/Destructor:
 queueing_node(const std::string& node_name, const node_context& external_context);
 virtual ~queueing_node() = default;

 // Attributes:
 virtual scale time_precision() const { return micro; }

 // Ports:
 port<flow, input, duration> serv_dt_input; // service duration
 port<message, input, int64> job_id_input; // job ID (input)
 port<message, output, int64> job_id_output; // job ID (output)
 port<flow, output, duration> idle_dt_output; // idle duration

protected:
 // State Variables:

duration serv_dt; // service duration (constant)
 std::vector<int64> Q; // queue of IDs of jobs waiting to be processed

duration idle_dt; // idle duration (accumulating)
 duration planned_dt; // planned duration

 // Event Handlers:
 virtual duration initialization_event();
 virtual duration unplanned_event(duration elapsed_dt);
 virtual duration planned_event(duration elapsed_dt);
 virtual void finalization_event(duration elapsed_dt);
};

Implementation

Observe there are
four types of ports.

Atomic
Node

Implementation

Here they are
in the diagram.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Implementation

Each type of port is associated with one
of the four main types of events.

class queueing_node : public atomic_node
{
public:
 // Constructor/Destructor:
 queueing_node(const std::string& node_name, const node_context& external_context);
 virtual ~queueing_node() = default;

 // Attributes:
 virtual scale time_precision() const { return micro; }

 // Ports:
 port<flow, input, duration> serv_dt_input; // service duration
 port<message, input, int64> job_id_input; // job ID (input)
 port<message, output, int64> job_id_output; // job ID (output)
 port<flow, output, duration> idle_dt_output; // idle duration

protected:
 // State Variables:

duration serv_dt; // service duration (constant)
 std::vector<int64> Q; // queue of IDs of jobs waiting to be processed

duration idle_dt; // idle duration (accumulating)
 duration planned_dt; // planned duration

 // Event Handlers:
 virtual duration initialization_event();
 virtual duration unplanned_event(duration elapsed_dt);
 virtual duration planned_event(duration elapsed_dt);
 virtual void finalization_event(duration elapsed_dt);
};

Implementation

The code to be executed for each
type of event is placed in these four
member functions.

class queueing_node : public atomic_node
{
public:
 // Constructor/Destructor:
 queueing_node(const std::string& node_name, const node_context& external_context);
 virtual ~queueing_node() = default;

 // Attributes:
 virtual scale time_precision() const { return micro; }

 // Ports:
 port<flow, input, duration> serv_dt_input; // service duration
 port<message, input, int64> job_id_input; // job ID (input)
 port<message, output, int64> job_id_output; // job ID (output)
 port<flow, output, duration> idle_dt_output; // idle duration

protected:
 // State Variables:

duration serv_dt; // service duration (constant)
 std::vector<int64> Q; // queue of IDs of jobs waiting to be processed

duration idle_dt; // idle duration (accumulating)
 duration planned_dt; // planned duration

 // Event Handlers:
 virtual duration initialization_event();
 virtual duration unplanned_event(duration elapsed_dt);
 virtual duration planned_event(duration elapsed_dt);
 virtual void finalization_event(duration elapsed_dt);
};

Implementation

Observe that three of the functions
have time duration arguments.

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

These are the Elapsed Durations.

Elapsed
Duration

Elapsed
Duration

Elapsed
Duration

Implementation

Initialization
Event

Unplanned
Event

Planned
Event

Finalization
Event

Planned
Duration

Planned
Duration

Planned
Duration

Implementation

As for the Planned Durations…

class queueing_node : public atomic_node
{
public:
 // Constructor/Destructor:
 queueing_node(const std::string& node_name, const node_context& external_context);
 virtual ~queueing_node() = default;

 // Attributes:
 virtual scale time_precision() const { return micro; }

 // Ports:
 port<flow, input, duration> serv_dt_input; // service duration
 port<message, input, int64> job_id_input; // job ID (input)
 port<message, output, int64> job_id_output; // job ID (output)
 port<flow, output, duration> idle_dt_output; // idle duration

protected:
 // State Variables:

duration serv_dt; // service duration (constant)
 std::vector<int64> Q; // queue of IDs of jobs waiting to be processed

duration idle_dt; // idle duration (accumulating)
 duration planned_dt; // planned duration

 // Event Handlers:
 virtual duration initialization_event();
 virtual duration unplanned_event(duration elapsed_dt);
 virtual duration planned_event(duration elapsed_dt);
 virtual void finalization_event(duration elapsed_dt);
};

Implementation

Planned Durations are produced by
three of the functions as return
values.

For more information, visit the SyDEVS website.

https://autodesk.github.io/sydevs

https://autodesk.github.io/sydevs/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

