SyDEVS Introduction

Theory — Paradigm — Implementation

Autodesk Research
June 2018

SyDEVS is a framework supporting the development and integration of
systems analysis and simulation code.

Decades of theory on the representation of systems forms a basis for
the SyDEVS approach.

A paradigm has been developed that combines dataflow programming
with discrete event simulation, and allows any simulation to be specified
in the form of a node graph.

To implement a simulation using this approach, nodes are defined as
C++ classes which inherit from classes in the SyDEVS open source library.

Theory

Theory

SyDEVS is based on theory that
dates back to the late 1960s.

1970 1980 1990

2000

2010

2020

Theory

Here is a small sample of related
publications from the last 50 years.

1970 1980 1990 2000

2020

A. Wayne Wymore
A Mathematical Theory of Systems Engineering

1967

i

Theory

MODELING OF SYSTEMS 71

= o((m(P)(f—s)—>v,t — (@SN f—~8)7)) ifr>0 and
A(f—>s,)# @ and (#({0, IN((f—s)() =1 and
b=V A5,)

=o¥*(f,5)x) ift=0,

=o(m(P))f—s, 0 ifi>0 and A(f—s510)=@ and 5s=0,

= o(m(P)f— 5, Do((#(P))f,)x) ift>0 and A(f—s5,0) =2
and s>0 and A(f.s)= @,

= o((a(P))f— 5, O(#(SN(f(s)) ifr>0 and A(f—s)=g
and s> 0, and A(f,s)# @ and (=({0, 11)(f(s7) =0,

= a((m(PNf— 5, W o((w(PY f—u, s —){(#(SN(f@))) if ¢>0
and A(f—s#) =2 and s>0 and A(f,s)# @ and
(@0, IS ™M) = 1 and u =V A(f, s),

=@SN(=) if >0 and A(f 5= @
and (#({0, INN(f—)N =0,

= a((@(PN(f—~) — v, t — o WESN(f—)w)) if >0 and
Alf—s,) # @ and (#(0, ID(f—()) =1 and
v=V A(f—s,1);

=og*(f,s)x) if 1=0,

=a((@(P)f,O)x) if t>0 and s=0 and A(f,s+i)=02
(because A(f,0) =@ and A(fis+)= A(f.s) U A(f—3, 1)),

=a((#(P)f,s+Hx) if +>0 and s>0 and A(f,s+0) =g,

= a((m(P)) f— s O(#(S)Af(s)) if +>0 and 5s>0 and
Af,s+0# o and (@0, IDNF(s +) =1 and
s=VA(f.s+ 1) (because f >0 and A(f—s510))=F and
s>0and A(f,s)% @ and («({0, IN)f(s)) =0 if and only if
t>0 and s>0 and A(f,s+) # & and
@O, UG + 0N =1 and s=VAfs+),

= o((m(PNSf—w s+t —u)l(@SN(f@) if £>0 and 5>0
and A(f—s5 1)=& and A(f,s)# & and
@0, IMfGN =1 and u=V A(f5)
(which implies then that w =V A(f, s + 1)),

=@ESNs+0) if t>0 and A(f—s,8)# @ and
({0, N (s + N =0,

=o((w(P)f—s5+ v, t —)(#=(SN((s + o)) if >0 and
Af>s5,0# & and v=VY A(f—s1) and
@0, I+ =1
(which implies that s + v = VY A(f, s + 1)).

General methods to formally
represent systems began with
the work of Wayne Wymore.

Bernard P. Zeigler
Theory of Modeling and Simulation

1976

Classic DEVS With Ports

Theory

Modeling is made casier with the introduction of input and output
example, a DEVS model of a storage naturally has two input por
storing and the other for retrieving. The more concrete DEVS form;
port specifications is as follows:

DEVS = (X,Y,S- ‘Saxt] 8inr i)vr ta)

where

X= {(p. v)|p e Inborts,v e X,,} is the set of input ports and va
Y= {(p. u)| p e OQutPorts, v €Y, } is the set of putput ports and
S is the set of sequential states

8urt Q % X — §is the external state transition function
St 8§ — S is the internal state transition function

A: 8 =Y is the output function

ta: S — Ry, is the time advance function

Q: = {(s.e]| se8,0<e< ta(s)} is the set of total states.

Note that in classic DEVS, only one port receives a value in a
evenl. We shall see later that parallel DEVS allows multiple ports
values at the same time. :

Bernard Zeigler applied similar
ideas to simulation.

Theory

He found that essentially all simulations can be represented
in a common form based on the discrete event simulation
paradigm. Zeigler named this common form "DEVS".

Bernard P. Zeigler
Theory of Modeling and Simulation

1 9 7 6 DEVS = (X,Y,S,8ext , Siu A, ta)

X // v Q\ 7
=

Theory

1970

1980

1990

2000

2020

Theory

PDE !
Over the years, the generality of Bond Graph a-causal
DEVS was confirmed. It was found KTG |
Cellular Automata
that for each of the most common \ |
. . DAE non-causal set !
modeling paradigms, any model e . Process Interaction
expressed in that paradigm could Discrete Event
also be represented using DEVS. System Dynamics Petri Nets
' Activity Scanning
DAE causalsete——Transfer Funiction Discrete Event

DAE cau
Event Scheduling

Discrete Event
Hans L. M. Vangheluwe

DEVS as a Common Denominator...

scheduling-_lbrid-DAE: DEVS&DESS"
-\

Z O O O ' Difference Equations DEVS
state trajectory data (observation frame)

X // v Q\ 7
=

Theory

1970

1980

1990

2000

2020

Autodesk Research & Carleton University
Formal Languages for Computer Simulation

Theory

[Start Simulation]

= [time of next input]

tne =t +ta(s)

A

x:= [next input]
[remove x from inputs]
5:= Oguel(S, tayet), X)
t.=t

ext

y:=A(s)

[ify # @, add y to outputs]
5:= Ojn:ls)

t:=t;

int

In 2011, researchers at Autodesk
began exploring how to make DEVS
more approachable to scientific
and engineering communities.

Autodesk Research
DesignDEVS Help Graphic

2012

Theory

/lnputMessage/
24

/ Parameters /
2

Constant Initialization

local p = get parameter (name)

instance constant = value

v

State Initialization

state variable = value

v

External Transition

Time Advance

local time elapsed = elapsed()
local port, walowe = input()

[

retorn delay

N

inputarrives before delay elapses
{or at the same time)

delay elapsesbefore
- inputarrives

Internal Transition

endtime
isreached

= local time elapsed = elapsed()

ontput (name, wvaluoe)

Finalization

local time elapsed = elapsed()

set statistic(name, wvalue)

24
/ Statistics /

24
/)utput Messages/

The process involved
several iterations.

Theory

Average Service Duration Bank Machine Armiving
Customer AccountT
Exchange Rate Update
Initial Balances . .
}pa,ame,e,s Eventually, a set of visual interfaces
Initialization

were designed along with a new way of
s expressing DEVS.

~

Planned duration...

elapsed? interrupted?

Interrupted by...

end of incomming
simulation? message?
3
O
Message

Unplanned Event

Autodesk Research & Simon Fraser University

Designing DEVS Visual Interfaces... o
Finalization
Statistics {
Served
Customer Unserved
Customer wy Account Service Denials p
Change Ready }
Notification Service Failures

X // v Q\ 7
=

Theory

1970

1980

1990

2000

2020

Theory

¢\ systems Design & Simul. X

&« C (| & Autodesk, Inc. [US] | httpsy/

imulation

.com/projects/syst

PUBLICATIONS ~ PEOPLE GROUPS

/\ AUTODESK.

RESEARCH

PROJECTS ~ OPPORTUNITIES ~ BLOG ~ NEWS

For more information on the theory
underlying the SyDEVS framework, visit
the Autodesk Research website and
find the "Systems Design & Simulation”
project.

www.autodeskresearch.com

Project: Systems Design & Simulation

Systems Design & Simulation

While traditional programming practices have produced a wide range of
relatively independent simulation methods, predictive models of
extremely complex natural and artificial systems will require a more
scalable, more collaborative approach to modeling. This project strives
for software that will help researchers develop, debug, document, share,
and integrate simulation code.

GROUPS

Complex Systems Research

0000

19 publications

OVERVIEW

PUBLICATIONS Tl 76 8 @3 w1 004 905 95 WO w6
O 702 T 648 66 064 965

PROJECT MEMBERS T T3 Tl T 613 B T 850 %45 95
T AN TH3 T TED ex2 31 a3 Sed 88

ALUMNI MEMBERS TEO 761 76l T6L T6I T 650 T24 69 w4
Tl 61 760 Tk 760 60 T 647 Bad s

me e ma mor g e e e [

™2 7O L T T3 WA WO 761 60 649

Modeling

Simulation

https://autodeskresearch.com/opportunities

Rhys Goldstein, Azam Khan, Olivier Dalle, Gabriel Wainer (2017)

Multiscale Representation of Simulated Time
SIMULATION: Transactions of The Society for Modeling and
Simulation International (SAGE)

40 pages.
DOWNLOAD PDF [¥]

Rhys Goldstein, Azam Khan (2017)

Simulation-Based Architectural Design

Guide to Simulation-Based Disciplines: Advancing Our
‘Computational Future

Springer

July 2017

pp. 167-182

Rhys Goldstein, Simon Breslay, Azam Khan (2017)

Practical Aspects of the DesignDEVS Simulation
Environment

SIMULATION: Transactions of The Society for Modeling and
Simulation International (SAGE)

August 2017, Published online

26 pages
DOWNLOAD PDF Y

Paradigm

Paradigm

SyDEVS supports a node-based
modeling paradigm combining
dataflow programming with DEVS.

- = .
]
— -

Paradigm

Dataflow programming is a widely
Datafl OW used paradigm in which the links
between nodes form a directed

acyclic graph.

- =
i
— -

-
-

Paradigm

A node is executed once it receives

Datafl oW data on all of its input ports.

Paradigm
To introduce the notion of time into the
paradigm, a column of discrete event
D EVS simulation nodes is incorporated into
the graph. Links between these nodes
may form cycles.

Paradigm

The execution of the entire graph is
now partitioned into three phases.

Paradigm

The first phase is called "Initialization".
A dataflow network collects data and

| N Itla I ization converts it into a form suitable for

(Dataflow)

Paradigm

The second phase is the "Simulation"
(or "DEVS") phase. Messages are

passed from node to node as time
advances.

H
H

Simulation

m (DEVS)
e
H

-

H
H

Paradigm

The third phase is called "Finalization".
Another dataflow network is executed
to prepare statistics and metrics using
data from the simulation nodes.

Finalization
(Dataflow)

H
—
H

-
-

H
H

-

Paradigm

Paradigm

Function nodes are the basic type of dataflow node.

Atomic nodes are the basic type of simulation node.

Function
Node

-

Atomic
Node

Paradigm

= o
=S

Composite nodes contain networks (dataflow + DEVS + COm pOSIte
dataflow) of other nodes. The contained nodes can N Ode
themselves be composite nodes, forming a hierarchy.

Collection
Node

Paradigm

Collection nodes contain any number of
instances of a single type of node. The
number of instances can change during
a simulation. Collection nodes are useful
for agent-based modeling, where each
instance is an agent.

Paradigm

Nodes

1. Function Node
2. Atomic Node

3. Composite Node
4. Collection Node

Here is a list of the four types of nodes.

Paradigm

Each type of node contains a particular
set of elements.

Paradigm

For the purpose of understanding the
paradigm, the elements of the atomic
node are of key importance.

Atomic

Node

Paradigm

Atomic nodes contain functions for four types of events.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

The Initialization Event is invoked once, at the beginning
of the simulation or (if the node is an agentin a
collection node) when the node is created.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

An Unplanned Event is invoked every time a message is
received. The node does not know when it will receive a
message; hence these events are "unplanned". The fact
a node must always be ready for an incoming message is
one of the distinguishing characteristics of DEVS.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

A Planned Event is essentially scheduled by the node,
and hence "planned". It is only during one of these
events that a message can be sent.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

The Finalization Event is invoked once, at the end of the
simulation or (if the node is an agent in a collection
node) when the node is terminated.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Duration

Initialization
Event

Elapsed .
Duration

Elapsed Unplanned

Paradigm

The Elapsed Duration is the time elapsed since the
previous event. It is available as a source of information
for Unplanned, Planned, and Finalization events. For
Initialization events, there is no previous event, and
hence no Elapsed Duration.

Event

Elapsed __ Finalization
Duration Event

Planned
Event

N

3

Paradigm

The Planned Duration is the time before the next scheduled
Planned Event. It is produced by every Initialization, Unplanned,
and Planned event, overriding any previously scheduled
Planned Event. For Finalization events, there is no next Planned
Event, and hence no need to produce a Planned Duration.

Unplanned pianned

Event Duration
Initialization _, Planned Finalization
Event Duration Event
Planned _, Planned
\\ Event Duration

3

Paradigm

Nodes Events

1. Function Node 1. Initialization Event
2. Atomic Node 2. Unplanned Event

3. Composite Node 3. Planned Event

4. Collection Node 4. Finalization Event

Here are lists of the four types of nodes
and four main types of events.

Implementation

Implementation

SyDEVS

Simulation-based analysis of complex systems involving people, devices, physical elements, and dynamic environments.

View on GitHub

Overview Getting Started AP| Reference

SyDEVS

Multiscale Simulation and Systems Modeling Library

About

The SyDEVS open source C++ library provides a framework for modeling and simulating complex
systems.

In a nutshell, it will help make your simulation code scale.

Using SyDEVS, physics solvers and other simulation models can be implemented as independent
nodes, and later integrated. Even nodes that use different time steps (or variable time steps) can be
linked together and allowed to interact.

The framework combines 3 modeling paradigms: discrete event simulation, dataflow programming
and agent-based modeling. These foundations give SyDEVS the generality needed to support
essentially any type of simulation, regardless of domain, time scale, or time advancement scheme.

Documentation

e Overview: Briefly introduces SyDEVS.
e Getting Started: Explains how to use SyDEVS, step by step.
o API Reference: Documents the C++ classes that make up the library.

SyDEVS is an open source C++ library
that supports modeling and simulation
using the previously described dataflow
+ DEVS + dataflow paradigm. The main
SyDEVS website is at the following URL:
https://autodesk.github.io/sydevs

https://autodesk.github.io/sydevs/

The Overview page on the
website illustrates the four
types of nodes.

Implementation

Home Overview

Overview

Brief Introduction to SyDEVS

Concept

Getting Started

APl Reference

Using SyDEVS, simulation code is organized into nodes, which can be linked together to form
dataflow and simulation networks. The four main types of nodes are illustrated below.

Input

Atomic Node Message
Ports J

¥
Unplanned
At,—= Event —=At,
Handler

Initialization Finalization | Flow
Event —At, At,— Event QOutput

Input
Handler Handler Ports

Ports
Planned

At~ Event -—-=Af,
Handler

Message
Qutput
Ports

Composite Node Message J

Input
s
<

&

Ports
O

Flow [Initialization
Input| Components
Ports ™ simulation /
O Components

\D =|:|_.Q :
Message
Output
Ports

Function Node

i)
Flow Flow Flow
Input Event Output
Ports Handler +] Ports

At, - Elapsed Duration
At, - Planned Duration
O - Agent

Collection Node Message J
Input
Ports

¥

Macro Unplanned

e, —» Event AL,
Handler

Macro CQOCICQ Macro Flow
Initialization Finalization
Input —=At, Ab—= Output
Ports Event P Event Parts

Handler 2T -+ Handler

Micro & Macro Planned
A — Event —F,
Handlers

Message
Output
Ports

Implementation

Home Overview Getting Started API| Reference

| Prev | Getting Started - Table of Contents | Next |

Part 2: Creating your First Simulation

Let's start by adding a few new folders to your sydevs-examples project.

1.IN sydevs-examples/src/examples , Create a folder named getting started.

2.In the new getting_started folder, create a folder named waveform. This is where your first
SyDEVS node will be located.

3.In sydevs-examples/src/simulations Make a folder named first_simulation. The code here will
invoke the simulation code in examples/getting started/waveform.

The overall directory structure should now be as follows.

The Getting Started tutorial s

guides users through the external/
process of setting up a SyDEVS -
. . . . examples/
project and running simulations. getting_started/
wavetorm,
simulations/

first_simulation/
setting_up/

The cmakeLists.txt file will have to be updated, so let's get that out of the way. Add the following
instructions to the examples section. These instructions prepare a list of the header (.h) files you will
later create in the waveform folder.

set(WAVEFORM _DIR ${EXAMPLES_DIR}/getting_started/waveform)
file(GLOB WAVEFORM HDRS "${WAVEFORM DIR}/*.h")

There is also an API Reference.

Implementation

SYDEVS 0.2

Multiscale Simulation and Systems Modeling Library

Main Page

API Reference Overview

» MNamespaces
» Classes

» Files

Namespaces | Classes | Files ‘ Q- Search

API Reference Overview

About SyDEVS

Thig library provides a framework for implementating complex systems analysis and simulation code in a modular/hierarchical fashion. It
was originally developed to serve as a backend for the visual programming interfaces described by Maleki et al. (2015}, but the sama
functionality can be achieved without a GUI by defining C++ classes that derive from one of the system node base classes
{atomic_node, composite_node, collection_node, function_node). The framework combines two programming paradigms: dataflow
programming as exemplified by Autodesk's Dynamo tool, and the DEVS message-passing paradigm implemented in tools such as
DesignDEVS (see software, conference paper, journal paper). These foundations give the framework the generality neeeded to support
essentially any type of simulation, regardless of domain, time scale, or time advancement scheme.

Main Classes
Namespace: sydevs

« Core Classes (sydevs/core) - generic classes for a variety of applications
o scale (scale.h) - dimensionless power of 1000
» number_types.h - related header file with number type aliases, pi constant
o quantity (quantity.h) - Standard Intemational (Sl) quantity (e.g. mass, acceleration)
= units (units.h) - related template for Sl units (e.g. grams, meters/second*2)
o arraynd (arraynd.h) - multidimensional array
= range (range.h) - related class representing range of array indices
o core_type (core_types.h) - traits for types exchanged between system nodes
» pointer {pointer.h) - related class for pointers to any type of data
= string_builder (string_builder.h) - related class for value-to-string conversion
« Time Classes (sydevs/time) - multizcale tima representation
o time_point (time_point.h) - arbitrary-precision peint in time
o time sequence (time_sequence.h) - sequence of increasing time points
« time_queue (time_gueue.h) - data structure tracking future event times
o time_cache (time_cache.h) - data structure tracking past event times
« Systems Classes (sydevs/systems) - dataflow + message-passing networks
o system_node (system_node.h) - base class for all nodes
= atomic_node (atomic_node.h) - derived from system_node, supports event handlers
» composite_node (composite_node.h) - derived from system_node, supports fixed-structure compositions
= collection_node (collection_node.h) - derived from system_node, supports variable-length collections
= function_node (function_node.h) - derived from system_node, supports functions
» parameter_node (parameter_node.h) - derived from function_node, handles parameter values
» statistic_node (statistic_node.h) - derived from function_node, handles statistic values
« port<data_mode, data_goal> (port.h) - related classes for node ports
o simulation (simulation.h) - template for simulations based on a port-free system_node
» discrete_event_time (discrete_event_time.h) - related class tracking progress through a simulation

Generated on Wed May 2 2018 20:30:44 for SyDEVS by d@x‘v‘ggm 186

Implementation

At present, there is no visual
programming interface. Node graphs
similar to the one shown must be
defined in C++ using SyDEVS classes.

Implementation

Suppose one wishes to implement
an atomic node.

Atomic
Node

Implementation

They would then write a C++

class that inherits from the class queueing_node :Ipublic atomic_nodel
atomic_node base class {
provided by the SyDEVS library. P°i¢

// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;

// Attributes:
virtual scale time_precision() const { return micro; }

// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)

port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration

protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:

virtual duration initialization_event();

virtual duration unplanned_event(duration elapsed dt);
virtual duration planned_event(duration elapsed dt);
virtual void finalization_event(duration elapsed dt);

}s

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
Observe there are port<flow, input, duration> serv_dt_input; // service duration
por"c#_i int64> job_id_input; // job ID (input)
fourtypes of ports. port{message, output,lint64> job_id_output; // job ID (output)
portiflow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:

virtual duration initialization_event();

virtual duration unplanned_event(duration elapsed dt);
virtual duration planned_event(duration elapsed dt);
virtual void finalization_event(duration elapsed dt);

}s

Implementation

|
Here they are l | | Atomic
in the diagram.
Node

Implementation

Each type of port is associated with one
of the four main types of events.

Initialization
Event

N\

Unplanned
Event
Finalization
Event
Planned
Event

3

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)
port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:
The code to be executed for each virtual duration initialization event!);
. : virtual duration duration elapsed dt);
type of event I_S placed in these four virtual durationjplanned event(duration elapsed dt);
member functions. virtual void finalization_event duration elapsed dt);

}s

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)
port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:
virtual duration initialization_event();
Observe that three of the functions virtual duration unplanned_event(duration elapsed dt);
. . virtual duration planned _event(duration elapsed dt);
have time duration arguments. virtual void finalization_event(duration elapsed dt);

}s

Implementation

These are the Elapsed Durations.

Unplanned

Elapsed .

Duration Event
Initialization Elapsed __|Finalization
Event Duration Event

\\ Duration Event

3

Implementation

As for the Planned Durations...

Unp|anned Planned

Event Duration
Initialization _, Planned Finalization
Event Duration Event
Planned _, Planned
\\ Event Duration

3

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)
port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:

Planned Durations are oroduced b virtual duration initialization_event();
P y virtual unplanned_event(duration elapsed dt);

three of the functions as return virtual planned_event(duration elapsed dt);
values virtual void finalization_event(duration elapsed dt);

}s

For more information, visit the SyDEVS website:

https://autodesk.github.io/sydevs

https://autodesk.github.io/sydevs/

