SyDEVS Introduction

Theory — Paradigm — Implementation

Autodesk Research
December 2024

SyDEVS is a framework supporting the development and integration of
systems analysis and simulation code.

Decades of theory on the representation of systems forms a basis for
the SyDEVS approach.

A paradigm has been developed that combines discrete event
simulation, dataflow programming, and agent-based modeling, and
allows any simulation to be specified in the form of a node graph.

To implement a simulation using this approach, nodes are defined as
C++ classes which inherit from classes in the SyDEVS open source library.

Theory

Theory

SyDEVS is based on theory that
dates back to the late 1960s.

1970 1980 1990

2000

2010

2020

Here is a small sample of related
publications from the last 50 years.

Theory

1970 1980 1990 2000

2020

A. Wayne Wymore
A Mathematical Theory of Systems Engineering

1967

Theory

MODELING OF SYSTEMS 77

= o((m{P)(f—) = 0.1 — D(SN(f—H@)) if1>0 and
A(f—=s0)# 2 and (@{0, IPN(f—s)()) =1 and
v=VA(f—s1);

=o¥(f,5)x) ift=0,

=og(m(P))f—s5 0 ift>0 and A(f—s510)=2 and 5=0,

= o((m(P)f— 5, O(o((=(P))f,)@)) ift>0 and A(f—s,0) = @
and s> 0 and A(f,s)= @,

= a((@(P) f— 5, W(#(SN(f) ift>0 and A(f—s5,0=0
and s> 0, and A(f,9)# 2 and (=({0, IN(f () =0,

= ol(=(P)f — s, No((w(PNf— ;s — l(m(SH(@N) if >0
and A(f—>s,f)=2 and s>0 and A(f,s)# @ and
@0, IN(f) =1 and u =V A(f,),

= @SN~ i 1>0 and A(f>s0) %% @
and (#({0, INN(f— () =0,

= g((m(PN(f—>5) v, t —) (@SN) if 7>0 and
Af~>s0# 2 and (@0, 1DN(f) =1 and
v=V A(f—>s0;

=a*f,Hx) if 1=0,

=g((n(P)fi0)@) if t>0 and s=0 and A(f,s+1)=o
(because A(f,0) =@ and A(fis+ 1) = A(f.5) U A(f— s, 1)),

=a((@(P)f,s+Hx) if t>0 and s>0 and A(f,s+0) =g,

= g((n(P))f— 5 O(=(SN(f)) if >0 and 5>0 and
Afis+ty# @ and (@0, IN(f((s+) =1 and
s=V A(f,s+ 1) (because >0 and A(f—s1) =2 and
s>0and A(f,s)# @ and (#({0, 1DXf(s7)) =0 if and only if
t>0 and s> 0 and A(fis+ 1) # g and
@O NG+) =1 and s=VA(fis+ 1),

= o((@PNf—>u. s+t —ul(@(SN(f) if £>0 and s>0
and A(f—s5 1)=& and A(f,s)# @ and
@0, N () =1 and u=VY A(fs)
(which implies then that u =V A(f, s + 1)),

=(@(SNs+07) if t>0 and A(f—st)# & and
({0, 1IN + DN =0,

=d(m(P)f—s+ v, t —)(@HFENS((s + o)) if >0 and
A(f—s5,D# & and v=V A(f—s51) and
@({0, 1N+ 0N =1
(which implies that s + v =V A(f, 5 + £)).

General methods to formally
represent systems began with
the work of Wayne Wymore.

https://books.google.ca/books/about/Mathematical_Theory_of_Systems_Engineeri.html?id=hIhzjwEACAAJ

Bernard P. Zeigler
Theory of Modeling and Simulation

1976

Theory

Classic DEVS With Ports

Modeling is made casier with the introduction of input and output
example, a DEVS model of a storage naturally has two input por
storing and the other for retrieving. The more concrete DEVS formi
port specifications is as follows:

DEVS = (X,Y 8,801, 8, Mo1a)

where

X= {(p.v)] pelnPorts,v e X,,} is the set of input ports and va
Y= {(p.u)| p e OQutPoris, v €Y, } is the set of putput ports andy
S is the set of sequential states

8ot Q % X — §is the external state transition function
Syt 8§ — S s the internal state transition function

A: 8§ =Y is the output function

ta: 8- Ry, is the time advance function

Q= {{s.e]| se§,0%es ta(s)} is the set of total states.

Note that in classic DEVS, only one port receives a value ina
event, We shall see later that parallel DEVS allows multiple ports
values at the same time. :

Bernard Zeigler applied similar
ideas to simulation.

https://books.google.ca/books/about/Theory_of_Modeling_and_Simulation.html?id=REzmYOQmHuQC

Theory

He found that essentially all simulations can be represented
in a common form based on the discrete event simulation
paradigm. Zeigler named this common form "DEVS".

Bernard P. Zeigler
Theory of Modeling and Simulation

1 9 7 6 DEVS = (X,Y,S, 8¢t Siu A, ta)

https://books.google.ca/books/about/Theory_of_Modeling_and_Simulation.html?id=REzmYOQmHuQC

- N~ W 10 s i Devs whe P

Modelngis ade caserwithhe et f it snd s
cxample: s DEVS e of o storage oy ha o it
Soing e the er o treing The o oners DEVS o

SLYAGTE D i 150

DEVS (1,58 B i)
here

R T T———
iy PR A FONS————"
M Pm——

i the xemal it i functon
5 i th nrnal e ranstion funcion
¥ isthe utput oncion

s the e adoarcefucion

502 <)} i the st of il st

even. e shall s tr st pralel DEVS siows e P

1970 1980

Theory

= Bank Machine

= [time of next input]

1990

2000 2010 2020

Over the years, the generality of
DEVS was confirmed. It was found
that for each of the most common
modeling paradigms, any model
expressed in that paradigm could
also be represented using DEVS.

Hans L. M. Vangheluwe
DEVS as a Common Denominator...

2000

Theory

PDE |

Bond Graph a-causal

KTG

\ ¢ellular Automata

DAE non-causal set [

Process Interaction
Discrete Event

System Dynamics Petri Nets

! Activity Scanning
DAE causalset——Transfer Function Discrete Event

DAE cau
Event Scheduling
Discrete Event

scheduling

e ——

‘Aybrid-DAE : DEVS&DESS—
T _\

Difference Equations

state trajectory data (observation frame)

https://ieeexplore.ieee.org/document/900199

Theory

ank Miachine

|
|

o OEVS Wit Ports

DEVS (1,58 S i)

T
o

Outpor, Composite Node s Caliction Node:

e

Autodesk Research & Carleton University
Formal Languages for Computer Simulation

Theory

[Start Simulation]

o= [time of next input]

tinei= U+ ta(s)

A

x:= [next input]
[remove x from inputs]
$:= Ol (S, teyet), X)
t.=1

ext

y:=A(s)

[if y # @, add y to outputs]
5:= Ojpnels)

.=t

int

In 2011, researchers at Autodesk
began exploring how to make DEVS
more approachable to scientific
and engineering communities.

https://www.igi-global.com/book/formal-languages-computer-simulation/75484

Autodesk Research
DesignDEVS Help Graphic

2012

Theory

/lnputMessage/
2

/ Parameters /
4

Constant Initialization

local p = get parameter (name)

instance_constant = value

v

State Initialization

state variable = value

v

External Transition

Time Advance

local time elapsed = elapsed()
local port, valoe = inpunt()

[

retorn delay

N

inputarrives before delay elapses
{or at the sametime)

delay elapsesbefore
- inputarrives

Internal Transition

endtime
isreached

= local time elapsed = elapsed()

ontput (name, wvaluoe)

Finalization

local time elapsed = elapsed()

set statistic(name, wvalue)

2
/ Statistics /

24
/)utput Messages/

The process involved
several iterations.

Theory

Average Service Duration Bank Machine Cxi?;‘.::;gr —
Exchange Rate Up;ia_tej
e braaretors At one point, a set of visual interfaces
Initialization . .
was designed along with a new way of
State

'l expressing DEVS.

Planned duration...
elapsed? interrupted?

Interrupted by...

end of incomming
simulation? message?
3
O
Message

Unplanned Event

Autodesk Research & Simon Fraser University

Designing DEVS Visual Interfaces... o
Finalization
Statistics {
Served
Customer Unserved
Customer wy Account Service Denials 4
Change Ready }
Notification Service Failures

https://www.research.autodesk.com/publications/designing-devs-visual-interfaces-for-end-user-programmers/

Eventually, a new variant of DEVS called
“Symmetric DEVS” was published,
combining discrete event simulation
with dataflow programming and agent-
based modeling.

Autodesk Research
A Symmetric Formalism for Discrete Event Simulation...

2018

Theory

Atomic Node
Input
Ports

¥
Unplanned
Ate— Event —Af,
- Handler

Message ’

Flow \Initialization Finalization | Flow
Input Event —At, At— Event Output
Ports Handler Handler Ports
—

Planned

At,— Event —-Af,

Handler

Message

l Output

Ports

Composite Node Message ’
Input
Ports

_ﬁg @mm\

Flow s‘Ini‘cialization Finalization Flow
Input|] Components Components | Output
Ports N Simulation Ports
D‘(D Components —
\ -} 450

Message

l Output

Ports

Function Node

Flow * Flow Flow
Input Event Output
Ports Handler Ports

At, — Elapsed Duration
At, — Planned Duration

[- Agent
Collection Node Message ’
Input
Ports
¥
Macro Unplanned
Ate—» Event —At,
E— Handler
N Macro QOO Macro
Flow | Initialization Finalization | F10W
Input Event AL A= ¢ Output
Ports ven vent Ports
Handler Q)OO - Handler
—
Micro & Macro Planned
At,—> Event —At,
Handlers
Message
l Output
Ports

https://www.research.autodesk.com/publications/a-symmetric-formalism-for-discrete-event-simulation-with-agents/

Theory

ank Miachine

|
|

o OEVS Wit Ports

DEVS (1,58 S i)

T
o

Outpor, Composite Node s Caliction Node:

e

Paradigm

Paradigm

SyDEVS is an implementation of Symmetric DEVS, a
paradigm combining discrete event simulation,
dataflow programming, and agent-based modeling.

H
H
= =
— I — B

Paradigm

Dataflow programming is a widely
Datafl OW used paradigm in which the links
between nodes form a directed

acyclic graph.

H
H
= T
—— B

Paradigm

A node is executed once it receives

Datafl oW data on all of its input ports.

H
H

- —
o —
_

Paradigm
To introduce the notion of time into the
paradigm, a column of discrete event
D EVS simulation nodes is incorporated into
the graph. Links between these nodes
may form cycles.

Paradigm

The execution of the entire graph is
now partitioned into three phases.

Paradigm

The first phase is called "Initialization".
A dataflow network collects data and

| N Itla I ization converts it into a form suitable for

(Dataflow)

Paradigm

The second phase is the "Simulation"

(or "DEVS") phase. Messages are Simu |ation
passed from node to node as time

- dvances m (DEVS)
o

_

H
H

H
H

Paradigm

-

The third phase is called "Finalization".
Another dataflow network is executed
to prepare statistics and metrics using
data from the simulation nodes.

H
H

Finalization
(Dataflow)

H
—
H

-
-

Paradigm

Paradigm

Function nodes are the basic type of dataflow node.

Atomic nodes are the basic type of simulation node.

Function
Node

H

Atomic
Node

Paradigm

= o
==

Composite nodes contain networks (dataflow + DEVS + COm pOSIte
dataflow) of other nodes. The contained nodes can N Ode
themselves be composite nodes, forming a hierarchy.

Collection
Node

Paradigm

Collection nodes contain any number of
instances of a single type of node. The
number of instances can change during
a simulation. Collection nodes are useful
for agent-based modeling, where each
instance is an agent.

Paradigm

Nodes

1. Function Node
2. Atomic Node

3. Composite Node
4. Collection Node

Here is a list of the four types of nodes.

Paradigm

Each type of node contains a particular
set of elements.

Paradigm

For the purpose of understanding the
paradigm, the elements of the atomic
node are of key importance.

Atomic

Node

Paradigm

Atomic nodes contain functions for four types of events.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

The Initialization Event is invoked once, at the beginning
of the simulation or (if the node is an agentin a
collection node) when the node is created.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

An Unplanned Event is invoked every time a message is
received. The node does not know when it will receive a
message; hence these events are "unplanned". The fact
a node must always be ready for an incoming message is
one of the distinguishing characteristics of DEVS.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

A Planned Event is essentially scheduled by the node,
and hence "planned". It is only during one of these
events that a message can be sent.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Paradigm

The Finalization Event is invoked once, at the end of the
simulation or (if the node is an agent in a collection
node) when the node is terminated.

Unplanned

Event
Initialization Finalization
Event Event
Planned
\\ Event

3

Duration

Initialization
Event

Elapsed .
Duration

Elapsed Unplanned

Paradigm

The Elapsed Duration is the time elapsed since the
previous event. It is available as a source of information
for Unplanned, Planned, and Finalization events. For
Initialization events, there is no previous event, and
hence no Elapsed Duration.

Event

Elapsed __ Finalization
Duration Event

Planned
Event

N

3

Paradigm

The Planned Duration is the time before the next scheduled
Planned Event. It is produced by every Initialization, Unplanned,
and Planned event, overriding any previously scheduled
Planned Event. For Finalization events, there is no next Planned
Event, and hence no need to produce a Planned Duration.

Unplanned pianned

Event Duration
Initialization _, Planned Finalization
Event Duration Event
Planned _, Planned
\\ Event Duration

3

Paradigm

Nodes Events

1. Function Node 1. Initialization Event
2. Atomic Node 2. Unplanned Event

3. Composite Node 3. Planned Event

4. Collection Node 4. Finalization Event

Here are lists of the four types of nodes
and four main types of events.

Implementation

Implementation

At present, there is no visual
programming interface. Node graphs
similar to the one shown must be
defined in C++ using SyDEVS classes.

Implementation

Suppose one wishes to implement
an atomic node.

Atomic
Node

Implementation

They would then write a C++

class that inherits from the class queueing_node :Ipublic atomic_nodel
atomic_node base class {
provided by the SyDEVS library. P°i¢

// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;

// Attributes:
virtual scale time_precision() const { return micro; }

// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)

port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration

protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:

virtual duration initialization_event();

virtual duration unplanned_event(duration elapsed dt);
virtual duration planned_event(duration elapsed dt);
virtual void finalization_event(duration elapsed dt);

}s

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
Observe there are port<flow, input, duration> serv_dt_input; // service duration
por"c#_i int64> job_id_input; // job ID (input)
fourtypes of ports. port{message, output,int64> job_id_output; // job ID (output)
portiflow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:

virtual duration initialization_event();

virtual duration unplanned_event(duration elapsed dt);
virtual duration planned_event(duration elapsed dt);
virtual void finalization_event(duration elapsed dt);

}s

Implementation

|
Here they are l | | Atomic
in the diagram.
Node

Implementation

Each type of port is associated with one
of the four main types of events.

Initialization
Event

Unplanned
Event
Finalization
Event
Planned
Event

N

3

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)
port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:
The code to be executed for each virtual duration initialization event!);
. : virtual duration duration elapsed dt);
type of event I_S placed in these four virtual durationjplanned event(duration elapsed dt);
member functions. virtual void finalization_event duration elapsed dt);

}s

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)
port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:
virtual duration initialization_event();
Observe that three of the functions virtual duration unplanned_event(duration elapsed dt);
. . virtual duration planned_event(duration elapsed dt}h;
have time duration arguments. virtual void finalization_event(duration elapsed dt);

}s

Implementation

Elapsed .
Duration

Initialization
Event

Elapsed .
Duration

These are the Elapsed Durations.

Unplanned
Event

Elapsed __|Finalization
Duration Event

Planned
Event

N

3

Implementation

As for the Planned Durations...

Unp|anned Planned

Event Duration
Initialization _, Planned Finalization
Event Duration Event
Planned _, Planned
\\ Event Duration

3

Implementation

class queueing node : public atomic_node

{
public:
// Constructor/Destructor:
queueing_node(const std::string& node name, const node context& external context);
virtual ~queueing node() = default;
// Attributes:
virtual scale time_precision() const { return micro; }
// Ports:
port<flow, input, duration> serv_dt_input; // service duration
port<message, input, int64> job_id_input; // job ID (input)
port<message, output, int64> job_id_output; // job ID (output)
port<flow, output, duration> idle dt output; // idle duration
protected:
// State Variables:
duration serv_dt; // service duration (constant)
std::vector<int64> Q; // queue of IDs of jobs waiting to be processed
duration idle_dt; // idle duration (accumulating)

duration planned_dt; // planned duration

// Event Handlers:

Planned Durations are nroduced b virtual duration initialization_event();
P Y virtual unplanned_event(duration elapsed dt);

three of the functions as return virtual planned_event(duration elapsed dt);
values virtual void finalization_event(duration elapsed dt);

}s

For more information, visit the SyDEVS website.

https://autodesk.github.io/sydevs

https://autodesk.github.io/sydevs/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

